
www.dragino.com

MQTT Web User Interface

Document Version: 1. 
Firmware Version: Dragino-v2 LG02_LG08-5.3.xxx

Version Description Date

0.1 Initial draft 30-10-2019

0.2 – 0.3 Testing sections added 03-11-2019

MQTT_WebUserInterface-v0.3  1 / 28



www.dragino.com

Table of Contents

1  Introduction.....................................................................................3

2  MQTT Configuration Screens.............................................................3

2.1  General Server Profile Configuration............................................................4

2.1.1  Valid Connection Parameters.................................................................5

2.2  Host Specific Profile Configuration...............................................................7

3  MQTT Certificate Management Screen...............................................8

4 MQTT Channel Management Screen...................................................9

5  MQTT Process on LoRa Gateway......................................................10

5.1 Overview.....................................................................................................10

5.2 Channel Definition......................................................................................10

5.3 MQTT Publish Command.............................................................................11

6  Troubleshooting.............................................................................13

6.1 Host Connection Credentials.......................................................................13

6.2 Testing with mosquitto_pub........................................................................15

6.2.1 Single line examples:............................................................................15

6.2.2 Multi-line Examples:.............................................................................16

6.2.3 Testing with mqtt_process.sh................................................................18

6.3 Testing with LoRa Messages........................................................................23

6.3.1 Set up the IoT Host Platform configuration...........................................23

6.3.2 Set up Gateway LoRa Radio Settings....................................................23

6.3.3 Run the test..........................................................................................24

6.3.4 Example Arduino Sketch.......................................................................26

7 References......................................................................................28

MQTT_WebUserInterface-v0.3  2 / 28



www.dragino.com

1  Introduction

This User Guide describes the updated Web User Interface for configuring 

MQTT host connection on Dragino LoRa Gateway devices.

The updated interface replaces the interface previously provided as an 

extension of the OpenWrt LuCI web configuration interface.

Selecting the MQTT Menu item from the Services menu will display the new 

interface screens.

2  MQTT Configuration Screens

The main MQTT configuration screen is shown below. 

The configuration supports a General connection profile as well as several 

host platform specific profiles including ThingSpeak, Lewei50, MyDevices, 

Amazon Web Service (AWS) and MS Azure.

Selecting the Server Type at the top of the screen will change the set of 

parameters displayed to suit the particular host, and display the values stored

in the selected profile.

Once the parameter values have been entered or edited, clicking on the Save

button will update the values in the stored profile for the selected  Server 

Type, and these values will be used in subsequent connection requests.

To change the active Server Type to be used for connection requests, simply 

select the required profile and click on the Save button.

The host specific profiles have pre-set default values for some of the 

connection parameters. You can choose to select the stored host profile and 

the use these preset values, or choose the General profile and set all the 

required parameters.

MQTT_WebUserInterface-v0.3  3 / 28



www.dragino.com

2.1  General Server Profile Configuration

The General profile displays more fields than will typically be used for a 

specific host connection. 

For example, fields are displayed for both User/Password and 

Certificate/Key forms of authentication, but only one of these types of 

authentication will be used in practice.

Where fields are not required for a specific host connection, they 

should be left blank.

Publish and Subscribe functions can be individually selected using the 

checkboxes.

MQTT_WebUserInterface-v0.3  4 / 28



www.dragino.com

2.1.1  Valid Connection Parameters

The General profile allows flexibility in defining the parameter fields to be 

used in connection requests. However not all combinations of parameters will 

form valid requests, and the software allows for only  a specific set of 

requests. 

The software uses the mosquitto_pub and mosquitto_sub functions to 

establish connections with the host platform for Publish and Subscribe 

operations.

The connection process supports a defined set of parameter combinations as 

follows.

1. User/Password Authentication

Where all of User, Password and ClientID parameters are set, it is assumed 

that User/Password authentication will be used.

If the CA File parameter is set it will also be included in the connection 

command. (This is required for example for MS Azure)

2. Certificate/Key Authentication

Where all of Certificate, Key and ClientID parameters are set, it is assumed 

that Certificate/Key authentication will be used.

If the CA File parameter is set it will also be included in the connection 

command. 

The AWS profile uses this form of connection for example.

3. Anonymous

Where no User, Certificate or ClientID parameters are present, it is assumed 

that a simple anonymous connection is required.

This form is used for some testing servers.

MQTT_WebUserInterface-v0.3  5 / 28



www.dragino.com

4. Client ID Only

Where no User or Certificate parameters are present, and ClientID parameter 

is present,  then the command will include the ClientID field.

This form is used for some testing servers.

5. User and ClientID

Where the User and ClientID parameter are present, and there is no Password 

or Certificate parameters present, then the command will include the User 

and ClientID fields.

6. Invalid Parameter Set

Where none of the above sets of parameters are detected, the Publish and 

Subscribe connection commands will not be run and an error message will be 

logged.

MQTT_WebUserInterface-v0.3  6 / 28



www.dragino.com

2.2  Host Specific Profile Configuration

Selecting a specific host profile such as AWS shown above will adjust the 

parameter fields to show only those required for the given host.

Generally all fields shown for a specific host profile need to be 

correctly entered for the connection to be successful.

When the required values have been entered, click on the Save button to 

update the values in the profile and to set the selected profile to be active and

used for subsequent connection requests.

MQTT_WebUserInterface-v0.3  7 / 28



www.dragino.com

3  MQTT Certificate Management Screen

This screen allows you to load Certificate, Key and Certificate Authority (CA) 

files onto the Gateway device ready to be added to profiles and used in 

connection requests.

To load a file, click on the Browse button and select the required file from the 

file system on your PC.

Then click on the Upload button to load the file into memory.

The file will then appear in the list of Stored Files.

To delete a stored file, enter its name in full into the Delete File field and 

click on the Delete button.

You will be asked to confirm the deletion.

MQTT_WebUserInterface-v0.3  8 / 28



www.dragino.com

4 MQTT Channel Management Screen

This screen allows you to define logical Channels that map the names of 

message sources (as known to the remote sensor device and the Gateway – 

Local ID), to the name by which it is known at the Host platform (Remote 

ID), typically used as part of the Publish Topic string.

To enter a new Channel definition, enter an unused Channel Number, then 

complete the Local ID and Remote ID fields, and optionally the Write API 

field if it is required by the Host platform.

Then click on the Add button.  The new definition will appear in the Saved 

Channels list.

To delete a channel, enter the number of the required channel in the Channel

Number  field and click on the Delete button.

MQTT_WebUserInterface-v0.3  9 / 28



www.dragino.com

5  MQTT Process on LoRa  Gateway
5.1 Overview

This section describes how the LoRa to MQTT gateway process operates and 

includes some approaches troubleshooting the end to end connection.

The above diagram shows an overview of how the end to end messaging 

system works, from the creation of a message in a LoRa End Node (typically a 

remote sensor device) to the publishing of the message on a host IoT Platform

such as ThingSpeak, AWS or Azure via the MQTT protocol.

The message publishing process starts with an End Node generating a 

message whose payload contains an identifier for the End Node, and the data 

to be published e.g 

    Message Payload :  <6734>temp=34&hum=86

Here ‘6374’ is the identifier of the node, and it is followed by two data values 

expressed as ‘name=value’ pairs, one for temperature and one for humidity.

Note that the End Node identifier is not globally unique, but it is unique 

among the End Nodes that connect to the particular Gateway device.

This message is transmitted via LoRa and is received by the Gateway, which 

creates a file called ‘/var/iot/channels/6734’ which contains the message text. 

5.2 Channel Definition

The Gateway maintains a Channel definition table which maps End Node 

identifiers (Local ID) to publishing identifiers (Remote ID) on the host IoT 

platform.

MQTT_WebUserInterface-v0.3  10 / 28



www.dragino.com

The Gateway runs a script called ‘mqtt_process.sh’ which scans the directory 

‘/var/iot/channels’ looking for new files.

When a new file is detected in ‘/var/iot/channels’,  mqtt_process looks up the 

channel definitions to find an entry that matches the new file name, and 

extracts the corresponding Remote ID value and uses it as the Channel name.

Mqtt_process uses the Remote ID value to define the Publish Topic  e.g. for an 

AWS host, the default Topic string is:  ‘/<ClientID>/<Channel>/data’

For the example above, the Local ID ‘6374’ maps to Remote ID ‘765800’ so 

the Topic string would look like:  ‘/<clientID>/765800/data’.

The Client ID is the registered name of the Gateway device on the IoT Host 

platform. The Client ID for a particular gateway device is obviously unique 

among all the gateway devices connected to the particular IoT host instance, 

so the Topic string uniquely identifies the source of the sensor data via the 

Gateway identifier (Client ID) and the End Node identifier (Channel).

5.3 MQTT Publish Command

The Gateway device uses the Mosquitto software module for communication 

with the IoT Host via the MQTT protocol. (https://mosquitto.org)

To publish a message, the mosquitto_pub command is used.

For the above example message to be published on an AWS IoT Hub host 

that uses Certificate based authentication, the command would look like:

# mosquitto_pub  \

-h ahsty70p2ab23-ats.iot.eu-west-3.amazonaws.com \

-p 8883   \

-q 1   \

--cert <certificate file path>   \

--key <private key file path>   \

--cafile <certificate authority file path>   \

-i  <clientID>   \

-t  /<clientID>/765800/data   \

-m “<6734>temp=34&hum=86”   

MQTT_WebUserInterface-v0.3  11 / 28

https://mosquitto.org/


www.dragino.com

The command parameters are as follows:

-h  Server URL: ahrqy70p2lw97-ats.iot.ap-southeast-2.amazonaws.com

-p  Port :  8883

-q  QoS :  1

--cert   Certificate: /etc/iot/cert/AWSiot.pem.crt

--key    Key: /etc/iot/cert/AWSiot.pem.key

--cafile CA File: /etc/iot/cert/AmazonRootCA1.pem

-i    Client ID: <clientID>

-t    Topic: <clientID>/765800/data

-m  MQTT Data: “temp:34 hum:86”

For a ThingSpeak IoT host which uses User/Password authentication, the 

command would look like:

# mosquitto_pub  \

-h mqtt.thingspeak.com  \

-p 1883   \

-q 0   \

-u <my_user_name>

-P <my_password>

-i  <clientID>   \

-t  channels/765800/publish/<write_api>   \

-m “<6734>temp=34&hum=86&status=MQTTPUBLISH”   

MQTT_WebUserInterface-v0.3  12 / 28



www.dragino.com

6  Troubleshooting

Establishing a connection from a Sensor Node through a Gateway to Host 

involves many steps and different pieces of software and hardware, all of 

which have to be correctly configured for messages to be delivered 

successfully. For a new connection it is often useful to test step by step 

through the connection chain so that there are only a few variables to get 

correct at each step.

6.1 Host Connection Credentials

 When you register a device to send messages to an IoT Host, you will get a 

set of credentials and settings that are necessary to include in connection 

requests. Typical parameters and the flags used in the mosquitto_pub 

command are listed below.

1.  Host Address (-h)

This may be a fixed  URL e.g.

    thingspeak.com.au 

or it may be specific to the device that you are registering e.g. 

     ahrqy70p2lw97-ats.iot.ap-southeast-2.amazonaws.com

2. Host Port Number (-p)

This is the connection port number, and is 1883 by default for many hosts, 

however AWS and Azure use 8883.

3. Quality of Service (-q)

QoS values are generally 0, 1 or 2. Not all platforms support all values, but a 

value of 0 is safe to start with for all hosts.

4. Authentication Credentials

Authentication may use Username, with or without a Password, or may be 

based on an X.509 certificate scheme. 

4.1 Username and Password  (-u  -P)

Registering your device (e.g on ThingSpeak) will require creation of a 

Username and Password, which are generally used in the normal 

manner as part of the MQTT connection command, but Azure is an 

exception – see below.

4.2 Certificate Based (--cert  --key  --cafile)

In this case, registering your device (e.g. on AWS) will result in 

generation of a specific Certificate file and Public and Private Key files. 

MQTT_WebUserInterface-v0.3  13 / 28



www.dragino.com

For the MQTT connection command, the Certificate file and the private 

Key file need to be specified. In addition, a Certificate Authority file is 

also generally required. This file is common to all devices connecting to

the Host, and a suitable CA file for several Host services may be pre-

loaded as part of the Gateway firmware (e.g CA files are pre-loaded for 

AWS and Azure on the Dragino Gateway devices.)

In the case of the Azure IoT platform, it requires Username and 

Password, but also requires a CA file to be specified. The Password 

string is long and complex, comprised of several components, and 

includes a space character, so care need to be taken to enclose the 

string in parentheses when used on the command line.

5. Client ID  (-i)

A Client ID is generated as part of the device registration process on the Host 

platform.

6. MQTT Topic  (-t)

The Topic field determines how the data will be presented when it is published

on the MQTT host. 

For some Hosts, the Topic format is fixed , and may require a “Write API” key 

to allow publishing (e.g.  for ThingSpeak, the Topic structure is:   

'channels/<CHANNEL>/publish/<WRITE_API>'

For other hosts the Topic format is quite flexible e.g. the default Topic for AWS 

on the Dragino Gateway is:  ‘<CLIENTID>/<CHANNEL>/data’

This structure serves to simply define the origin of the message in terms of 

nodes using a particular Channel on a Gateway device with a particular 

Client ID.

7. MQTT Data  (-m)

The Data field contains the message payload. 

For some hosts the structure is fixed  in order to support predefined 

presentation of the data e.g. as graphs (e.g.  for ThingSpeak, the data string 

looks like  'temp=34&hum=86&status=MQTTPUBLISH' where

MQTT_WebUserInterface-v0.3  14 / 28



www.dragino.com

6.2 Testing with mosquitto_pub  

A basic test to check that the credentials and other parameters are correct 

can be made just using the mosquitto_pub command from a Linux terminal 

session on the Dragino Gateway device. This test uses just the 

mosquitto_pub utility and no other setting on the device, so it is a very basic

check on the correctness of the command parameters.

You can build up a suitable command in a text editor as either a single (long) 

line of parameters, or you can make it multi-line for ease of readability and 

use continuation characters at the end of each line. In either case you can 

edit the text of the command in the editor, then copy and paste it into the 

command line.

Note that the ‘-d’ flag enables the debug output from the command which 

provides a good indication of the progress and success of the command 

execution.

6.2.1Single line examples:

Azure

# mosquitto_pub -d -h Dragino-MQTT-Test.azure-devices.net -p 8883 

-u Dragino-MQTT-Test.azure-devices.net/Gateway-1 

-P "SharedAccessSignature\ sr=Dragino-MQTT-Test.azure-devices.net

%2Fdevices%2FDraginoDevice-

1&sig=9Kb27uYoys96tunZyqYsyAWc1n8ktDhnEK3i%2F%2B8I%2Ffc

%3D&se=1594260870" -i Gateway-1 

-t channels/200893/publish/B9Z0R25QNVEBKIFY -m "test message" 

--cafile "/etc/iot/cert/Azure.cer"

AWS

# mosquitto_pub -d  -h ahrqy70p2lw97-ats.iot.ap-southeast-

2.amazonaws.com  -p 8883  -i Gateway-1  -q 1  

-t devices/Gateway-1/SensorNode-3/messages/events  -m "test message"  

--cert "/etc/iot/cert/AWSiot.pem.crt"  --key  "/etc/iot/cert/AWSiot.pem.key"  

--cafile "/etc/iot/cert/AmazonRootCA1.pem"

Thingspeak

# mosquitto_pub -d  -h mqtt.thingspeak.com  -p 1883  -u dragino_user  

-P mypassword   -q 1   -i Gateway-3  

-t channels/820809/publish/ 8JIKADCBYSD21Z9B 

-m "field1=34&field2=89&status=MQTTPUBLISH"

MQTT_WebUserInterface-v0.3  15 / 28



www.dragino.com

6.2.2Multi-line Examples:

Azure

# mosquitto_pub -d   \

-h  Dragino-MQTT-Test.azure-devices.net   \

-p  8883   \

-u  Dragino-MQTT-Test.azure-devices.net/Gateway-1 \

-P  "SharedAccessSignature sr=Dragino-MQTT-Test.azure-devices.net

%2Fdevices%2FDraginoDevice-

1&sig=9Kb27uYoys96tunZyqYsyAWc1n8ktDhnEK3i%2F%2B8I%2Ffc

%3D&se=1594260870" \

-i  Gateway-1 \

-t  channels/200893/publish/B9Z0R25QNVEBKIFY \

-m  "test message"   \

--cafile   "/etc/iot/cert/Azure.cer"

AWS

# mosquitto_pub -d \

-h ahrqy70p2lw97-ats.iot.ap-southeast-2.amazonaws.com \

-p 8883 \

-i Gateway-1 \

-q 1 \

-t devices/Gateway-1/SensorNode-3/messages/events \

-m "test message" \

--cert "/etc/iot/cert/AWSiot.pem.crt" \

--key  "/etc/iot/cert/AWSiot.pem.key" \

--cafile "/etc/iot/cert/AmazonRootCA1.pem"

ThingSpeak

# mosquitto_pub -d \

-h mqtt.thingspeak.com \

-p 1883 \

-u dragino_user \

-P mypassword \

-q 1 \

-i Gateway-2 \

-t channels/820123/publish/8JIKADCBYSD21Z9B \

-m "field1=34&field2=89&status=MQTTPUBLISH" 

MQTT_WebUserInterface-v0.3  16 / 28



www.dragino.com

Example Outputs

Typical mosquitto_pub debug output for QoS=0

Client Gateway-2 sending CONNECT

Client Gateway-2 received CONNACK (0)

Client Gateway-2 sending PUBLISH (d0, q0, r0, m1, 'channels/820123/publish/

8JIKKXABCDE21Z9B', ... (38 bytes))

Client Gateway-2 sending DISCONNECT

Typical mosquitto_pub  debug output for QoS=1

Client Gateway-1 sending CONNECT

Client Gateway-1 received CONNACK (0)

Client Gateway-1 sending PUBLISH (d0, q1, r0, m1, 'Gateway-1/SensorNode-3',

... (18 bytes))

Client Gateway-1 received PUBACK (Mid: 1)

Client Gateway-1 sending DISCONNECT

MQTT_WebUserInterface-v0.3  17 / 28



www.dragino.com

6.2.3Testing with mqtt_process.sh  

The Gateway device uses the mqtt_process.sh script to get messages 

received from the LoRa radio and send them on to an IoT host platform via 

MQTT protocol. 

For Publishing, the script looks for incoming message files in the  /var/iot 

directory. When it finds a file, it uses the file name to look up the Channel 

definitions Local ID to find the corresponding Remote ID. It then builds up a 

mosquitto_pub command with the credentials and parameters defined in the 

MQTT Configuration.

Once you have a set of credentials and settings that work with the 

mosquitto_pub command, you can use these to complete the MQTT 

Configuration for your selected IoT server platform, then test the configuration

using mqtt_process.sh from the command line, which will provide extensive 

diagnostics to show you what is going on.

The step by step testing process is as follows:

1. Go to the Service/Lora Gateway configuration page and set the IoT 

Service field to Disabled. This will prevent any incoming LoRa messages from

interfering with the test.

2. Set the debug level to 10  by editing the file etc/config/gateway

In the file edit the line as below:

    config settings 'general'

option DEB '10'

This setting will maximise debug output, including debug output from 

mqtt_process.sh which will appear in the terminal session after you start the

script.

3. Define a Channel

Go to the MQTT Channel Management screen and set up a channel definition.

The Local ID will be used to simulate an incoming LoRa message from a  

Sensor Node, and the Remote ID will be used to represent the Sensor Node 

on the IoT platform.

Your IoT platform may require the Write API field to be completed (eg 

ThingSpeak), otherwise leave it blank.

MQTT_WebUserInterface-v0.3  18 / 28



www.dragino.com

4. Open three terminal sessions on the Gateway device and run commands as

follows:

A. Logread

Terminal Session #1

    # logread -f

This session will show information being added to the system log.

B. Start the MQTT process:

Terminal Session #2

    # mqtt_process.sh

This session will start the script and display debug output.

C. Send a message:

Terminal Session #3

    # echo  "Test message"  > /var/iot/channels/<channel Local ID>

This session is used to send test messages by creating message files which 

are read and processed by the mqtt_process.sh script. Use the Local ID of 

the channel definition that you created above.

MQTT_WebUserInterface-v0.3  19 / 28



www.dragino.com

Typical debug output for three different IoT platforms is shown below:

1. ThingSpeak

Message command:  

    # echo  "field1=55&field2=93"  > /var/iot/channels/DSN-2

Channel:

    Local ID:  DSN-2

    Remote ID: 820123

    Write API:  8JIKKXABCDE21Z9B

Output:

-----

Parameters

server: mqtt.thingspeak.com

port: 1883

user: my_user_name

pass: 7B6MABCDE7BS3JWB

QoS: 0

cert: 

key: 

cafile: 

clientID: DraginoGateway-2

remoteID: 820123

topic: channels/820809/publish/8JIKKXABCDE21Z9B

mqtt_data: field1=55&field2=93&status=MQTTPUBLISH

------

Client DraginoDevice-2 sending CONNECT

Client DraginoDevice-2 received CONNACK (0)

Client DraginoDevice-2 sending PUBLISH (d0, q0, r0, m1, 

'channels/820809/publish/8JIKKXABCDE21Z9B', ... (38 bytes))

Client DraginoDevice-2 sending DISCONNECT

MQTT_WebUserInterface-v0.3  20 / 28



www.dragino.com

2. AWS

Message command:  

    # echo  "temp:12.3 hum:45.6"  > /var/iot/channels/DSN-1

Channel:

    Local ID:  DSN-1

    Remote ID: DraginoSensorNode-1

    Write API:  

Output:

-----

Parameters

server: ahrabc0p12397-ats.iot.ap-southeast-2.amazonaws.com

port: 8883

user: 

pass: 

QoS: 1

cert: /etc/iot/cert/AWSiot.pem.crt

key: /etc/iot/cert/AWSiot.pem.key

cafile: /etc/iot/cert/AmazonRootCA1.pem

clientID: DraginoDevice-1

remoteID: DraginoSensorNode-1

topic: DraginoDevice-1/DraginoSensorNode-1

mqtt_data: temp:12.3 hum:45.6

------

Client DraginoDevice-1 sending CONNECT

Client DraginoDevice-1 received CONNACK (0)

Client DraginoDevice-1 sending PUBLISH (d0, q1, r0, m1,  

'DraginoDevice-1/DraginoSensorNode-1', ... (18 bytes)) 

Client DraginoDevice-1 received PUBACK (Mid: 1)

Client DraginoDevice-1 sending DISCONNECT

MQTT_WebUserInterface-v0.3  21 / 28



www.dragino.com

3. Azure

Message command:  

    # echo  "Test message"  > /var/iot/channels/DSN-3

Channel:

    Local ID:  DSN-3

    Remote ID: DraginoSensorNode-3

    Write API:  

Output:

-----

Parameters

server: Dragino-MQTT-Test.azure-devices.net

port: 8883

user: Dragino-MQTT-Test.azure-devices.net/DraginoDevice-3

pass: SharedAccessSignature sr=Dragino-MQTT-Test.azure-devices.net

%2Fdevices%2FDraginoDevice-3&sig=HcbA2hUd%2FYGWw5yI3J3v

%2Fjy9Gj95uipJIrMMxvQuWx0%3D&se=1594713233

QoS: 1

cert: 

key: 

cafile: /etc/iot/cert/Azure.cer

clientID: DraginoDevice-3

remoteID: DraginoSensorNode-3

topic: devices/DraginoDevice-3/messages/events/DraginoSensorNode-3/

mqtt_data:  Test message

------

Client DraginoDevice-3 sending CONNECT

Client DraginoDevice-3 received CONNACK (0)

Client DraginoDevice-3 sending PUBLISH (d0, q1, r0, m1, 

'devices/DraginoDevice-3/messages/events/DraginoSensorNode-3/', ... (18 

bytes))

Client DraginoDevice-3 received PUBACK (Mid: 1)

Client DraginoDevice-3 sending DISCONNECT

MQTT_WebUserInterface-v0.3  22 / 28



www.dragino.com

6.3 Testing with LoRa Messages

In order to test end-to-end from a Sensor Node through the Gateway and on  

to the IoT Platform, you can use a simple device equipped with a LoRa radio to

generate messages. 

This example uses an Arduino board fitted with a LoRa shield and running a 

simple sketch that generates a series of messages containing random data 

values for Temperature and Humidity from a simulated sensor.  The sketch 

code is shown in the following section.

6.3.1Set up the IoT Host Platform configuration

Set up the configuration for the IoT Host platform where you want the 

messages to be published. (See previous section for guide)

Define  a Channel that has the Local ID matching the “device_ID” string 

used in the Arduino sketch (e.g. the sketch code shown uses “10009” as the 

device_ID string).

6.3.2Set up Gateway LoRa Radio Settings

Assuming that the Gateway device has been newly flashed and has the 

default settings, you need to check that the settings match the Arduino LoRa 

shield settings in the sketch code. The example code uses a Frequency 

setting of “915000000”  or 915.0MHz.  Your devices may use another default 

frequency, for example “868000000” or 868.0MHz in Europe.

Edit the sketch code to suit the LoRa Shield radio, and set the Gateway to the 

same frequency.

Go to the Service/LoRa Gateway configuration page as shown below and 

set the following:

1. IoT Service:     “LoRaRaw Forward to MQTT Server”

2. Debug Level:     Set to highest level

3. Radio Settings / Frequency:     Same as sketch code setting

4. Radio Settings / LoRa Sync Word:  Same as sketch code setting.

                                                          Default 52 (0x34)

5. Leave all other fields on the screen blank or set to their default setting.

6. Save the settings and then go back and check that all settings have been 

saved correctly.

7. Reboot the Gateway to ensure that all settings have are correctly applied 

when the LoRa radio is started.

MQTT_WebUserInterface-v0.3  23 / 28



www.dragino.com

6.3.3Run the test 

1. Open a terminal session and run:

   #  logread  -f

This will display information being written to the system log.

2. Start the Arduino sketch code

Launch the Arduino IDE on your PC and start the sketch.

When the Arduino sketch is started, it will send a new message every 30 

seconds.

3. Open the Serial Monitor on the Arduino IDE to monitor the message sending

process.

4. The incoming LoRa messages will be shown in the Gateway log display 

terminal session, followed by the MQTT message parameters used to send the

message on to the IoT Host platform.

If no messages appear, then it is most likely that the radio settings do not 

match between the Arduino sketch and the Gateway, or that the Arduino and 

LoRa shield are not working.

MQTT_WebUserInterface-v0.3  24 / 28



www.dragino.com

A typical log output is shown below:

 daemon.info lg01_pkt_fwd[1458]: RXTX~ 

Receive(HEX):3c31303030393e54656d703d33332048756d3d383820436f756e743d3335

 user.notice root: [IoT.MQTT]:  Find Match Entry for 10009

 user.notice root: [IoT.MQTT]:

 user.notice root: [IoT.MQTT]:-----

 user.notice root: [IoT.MQTT]:Parameters

 user.notice root: [IoT.MQTT]:server[-h]: ahrabcqy70p12397-ats.iot.ap-southeast-

2.amazonaws.com

 user.notice root: [IoT.MQTT]:port[-p]: 8883

 user.notice root: [IoT.MQTT]:user[-u]:

 user.notice root: [IoT.MQTT]:pass[-P]:

 user.notice root: [IoT.MQTT]:pub_qos[-q]: 1

 user.notice root: [IoT.MQTT]:cafile[--cafile]: /etc/iot/cert/AmazonRootCA1.pem

 user.notice root: [IoT.MQTT]:cert[--cert]: /etc/iot/cert/AWSiot.pem.crt

 user.notice root: [IoT.MQTT]:key[--key]: /etc/iot/cert/AWSiot.pem.key

 user.notice root: [IoT.MQTT]:clientID[-i]: DraginoDevice-1

 user.notice root: [IoT.MQTT]:remote_id: DraginoSensorNode-1

 user.notice root: [IoT.MQTT]:pub_topic[-t]: DraginoDevice-1/DraginoSensorNode-1/data

 user.notice root: [IoT.MQTT]:mqtt_data[-m]: Temp=33 Hum=88 Count=35

 user.notice root: [IoT.MQTT]:------

MQTT_WebUserInterface-v0.3  25 / 28



www.dragino.com

6.3.4Example Arduino Sketch

/*

LoRa_Sender_MQTT:

Support Devices: LoRa Shield + Arduino 

Requires Library:

    https://github.com/sandeepmistry/arduino-LoRa 

  

Example sketch sends a message every 30 seconds using a simple protocol 

which will be processed by the Dragino Gateway device to send the payload 

on to a host IoT platform.

 

The End node will send out a message string:

  "<device_ID>field1=${tem}&field2=${hum}"   (ThingSpeak format)

or 

  “<device_ID>Temp=${tem} Hum=${hum}”      (General format)

When the LG01/LG02 gateway gets the data, it will parse the data string and 

forward the data to the IoT platform via MQTT protocol. 

Message information is also output to the Arduino Serial Monitor. 

Modified Nov 3 2019

by Dragino Technology Co., Limited <support@dragino.com>

*/

#include <SPI.h>

#include <LoRa.h>

long tem,hum;

int count=1;

int device_id=10009;       // ID of this End node.  

                                        // Match to Gateway Channel Local ID definition

void setup() {

  Serial.begin(9600);

  //while (!Serial);

  Serial.println("LoRa Sender");

  if (!LoRa.begin(915000000)) {              // Match to Gateway frequency setting

    Serial.println("Starting LoRa failed!");

    while (1);

  }

  LoRa.setSyncWord(0x34);                     // Match to Gateway sync setting

}

MQTT_WebUserInterface-v0.3  26 / 28



www.dragino.com

void loop() {

  tem = random(25,35);   // Generate a random temperature.

  hum = random(85,95);   // Generate a random humidity.

  Serial.print("Sending packet: "); Serial.print(count);

  Serial.print(" device_id: "); Serial.print(device_id);

  Serial.print(" tem: "); Serial.print(tem);

  Serial.print(" hum: "); Serial.println(hum);

  

  Serial.print("   Data:  <");

  Serial.print(device_id);

//  LoRa.print(">field1=");   // ThingSpeak

  Serial.print(">Temp=");    // General

  Serial.print(tem);

//  LoRa.print("&field2=");   // ThingSpeak

  Serial.print(" Hum=");      // General

  Serial.print(hum); 

  Serial.print(" Count=");    // General

  Serial.println(count);        // General

  delay(100);

  

  // compose and send packet

  LoRa.beginPacket();

  

  LoRa.print("<");

  LoRa.print(device_id);

//  LoRa.print(">field1=");  // ThingSpeak

  LoRa.print(">Temp=");    // General

  LoRa.print(tem);

//  LoRa.print("&field2=");  // ThingSpeak

  LoRa.print(" Hum=");       // General

  LoRa.print(hum); 

  LoRa.print(" Count=");      // General

  LoRa.print(count);             // General

  

 // LoRa.print(counter);

  LoRa.endPacket();

  count++;

  delay(30000);   // Wait 30 seconds before sending the next message

}

// End of code

MQTT_WebUserInterface-v0.3  27 / 28



www.dragino.com

7 References

https://www.hivemq.com/mqtt-essentials/

http://mosquitto.org/

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

https://thingspeak.com/pages/learn_more

https://docs.microsoft.com/en-us/azure/iot-hub/

MQTT_WebUserInterface-v0.3  28 / 28

https://docs.microsoft.com/en-us/azure/iot-hub/
https://thingspeak.com/pages/learn_more
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://mosquitto.org/
https://www.hivemq.com/mqtt-essentials/

	1 Introduction
	2 MQTT Configuration Screens
	2.1 General Server Profile Configuration
	2.1.1 Valid Connection Parameters

	2.2 Host Specific Profile Configuration

	3 MQTT Certificate Management Screen
	4 MQTT Channel Management Screen
	5 MQTT Process on LoRa Gateway
	5.1 Overview
	5.2 Channel Definition
	5.3 MQTT Publish Command

	6 Troubleshooting
	6.1 Host Connection Credentials
	6.2 Testing with mosquitto_pub
	6.2.1 Single line examples:
	6.2.2 Multi-line Examples:
	6.2.3 Testing with mqtt_process.sh

	6.3 Testing with LoRa Messages
	6.3.1 Set up the IoT Host Platform configuration
	6.3.2 Set up Gateway LoRa Radio Settings
	6.3.3 Run the test
	6.3.4 Example Arduino Sketch


	7 References

